Thermophoretic force and velocity of nanoparticles in the free molecule regime.

نویسندگان

  • Zhigang Li
  • Hai Wang
چکیده

We extend our previous gas-kinetic theory analysis of drag force in a uniform temperature field [Li and Wang, Phys. Rev. E. 68, 061206 (2003); 68, 061207 (2003)] to particle transport in fluids with nonuniform temperature. Formulations for drag and thermophoretic forces are proposed for nanoparticle transport in low-density gases. We specifically consider the influence of nonrigid body collision due to van der Waals or other forces between the particle and gas molecules and find that these forces play a notable role for particles a few nanometers in size. It is shown that the present formulations can be easily reduced to the classical result of Waldmann [Z. Naturforsch. A 14a, 589 (1959)] by assuming rigid body collision. From the force formulations we also obtain the equation governing the thermophoretic velocity. This velocity is found to be highly sensitive to the potential energy of interactions between gas molecules and particle, and as such Waldmann's thermophoretic velocity is not expected to be accurate for nanosized particles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ballistic thermophoresis of adsorbates on free-standing graphene.

The textbook thermophoretic force which acts on a body in a fluid is proportional to the local temperature gradient. The same is expected to hold for the macroscopic drift behavior of a diffusive cluster or molecule physisorbed on a solid surface. The question we explore here is whether that is still valid on a 2D membrane such as graphene at short sheet length. By means of a nonequilibrium mol...

متن کامل

Experimental and numerical investigation of unsteady flow around cylinder with four plates perpendicular to it with the rotational degree of freedom

In this study, the behavior of a subject consisting of a cylinder with 4 plates perpendicular to it with a rotational degree of freedom under airflow both through the numerical approach, known as improved discrete vortex and experimental approach were investigated. The experimental and numerical results have shown that oscillating regime occurs in low velocity and length. This movement is vibra...

متن کامل

Effects of thermal diffusion and chemical reaction on MHD transient free convection flow past a porous vertical plate with radiation, temperature gradient dependent heat source in slip flow regime

An analytical investigation is conducted to study the unsteady free convection heat and mass transfer flow through a non-homogeneous porous medium with variable permeability bounded by an infinite porous vertical plate in slip flow regime while taking into account the thermal radiation, chemical reaction, the Soret number, and temperature gradient dependent heat source. The flow is considered u...

متن کامل

Thermophoretic Deposition of Nanoparticles Due Toa Permeable Rotating Disk: Effects of Partial Slip, Magnetic Field, Thermal Radiation, Thermal-Diffusion, and Diffusion-Thermo

The present contribution deals with the thermophoretic deposition of nanoparticles over a rapidly rotating permeable disk in the presence of partial slip, magnetic field, thermal radiation, thermal-diffusion, and diffusion-thermo effects. The governing nonlinear partial differential equations such as continuity, momentum, energy and concentration are transformed into nonlinear ordinary differen...

متن کامل

CFD and dimensionless parameter analysis of Froude number to determine the flow regime over ogee spillways

In this research, the numerical method of computational fluid dynamics and dimensionless parameter of Froude number have been applied to determine the flow regime over ogee spillways.Froude number is a dimensionless dynamic parameter calculated using the square root of the ratio of inertia force and gravitational force. Considering that the study of the regimes of flow over hydraulic structures...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 70 2 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2004